B.Tech. 5th Semester (CSE) F-Scheme Examination, December-2017 THEORY OF AUTOMATA COMPUTATION Paper-CSE-305-F

		raper-USE-305-	r	
Tîm	ie allo	wed: 3 hours] [M	[Maximum marks : 100	
Not		uestion No. 1 is compulsory. A total selecting one question		
1.	Exp	lain the following questions:	10×2	
	(a)	Any two differences between	n DFA and NFA.	
	(b)	Define finite automata with	output briefly.	
	(c)	What do you understand by state in finite automata?	epsilon-closure of a	
	(d)	Explain closure properties of	of regular languages.	
	(e)	What is context sensitive lar	nguages?	
	(f)	Give formal definition of a l	PDA.	
	(g)	When do you say that turing string?	ng machine accept a	
	(h)	Give an example of an under	cidable problem.	
	(i)	Differentiate L* and L*.		
	(j)	State Halting problem of Tur	ring machine.	
		Section-A		
2.	(a)	Design a DFA which accept over the alphabet {a,b}.	s even number of a's	
	(b)	Explain the Limitations of F	inite Automata. 5	
	(c)	State and prove Arden's meth		

		(2)	4440 0	
3.	(a)	Construct a Finite Automata equiv	alent to the	
		regular expressions:	10	
		ba + (a + bb)a*b		
	(b)	Construct a DFA accepting all strings over {a,		
		ending in ab.	10	
		A		

Section-B

- 4. (a) Prove that a language is regular if and only if it is accepted by finite automata. 10
 - (b) What is meant by ambiguity? How we can test the ambiguity of a grammar?
 - (c) Define leftmost and rightmost derivations. Give examples. http://haryanapapers.com 5
- 5. (a) Define Chomsky normal form. Simplify the following CFG and convert it into CNF: 10
 S → ASB | ε
 A → aAS | a
 B → SbS | A | bb
 - State and prove pumping lemma for regular languages. Show that the language. 10
 L= {WW^R|W Σ(a,b)*} is not regular.

Section-C

- 6. (a) Explain the programming techniques involved in Turing machine.
 - (b) Construct PDA M to accept the language having equal number of 0's and 1's.

- 7. (a) Define Turing machine. Design a Turing machine that computes the integer function f defined as follows:
 10
 - $f(n) = 3^n$ where n is integer and $n \ge 0$
 - (b) Differentiate between PDA and NPDA with the help of example.

Section-D

- 8. Explain the following with example:
- 10×2

- (a) Partial recursive functions
- (b) Primitive recursive functions
- What do you mean by computability? Explain in detail.
 20

http://haryanapapers.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से