24046

B. Tech. 3rd Semester (ME) F-Scheme Examination,

Decembeber-2014

THERMODYNAMICS

Paper-ME-201-F

Time allowed: 3 hours]

[Maximum marks: 100

Note: Section-A is compulsory. Attempt five questions in all including compulsory question. Select at least one question from each section. Provide steam tables. Assume suitable values for missing parameters (if any).

Section-A

- 1. (a) Discuss the concept of temperature.
 - (b) Distinguish between heat and work from thermodynamic point of view.
 - (c) Define Joule Thomson coefficient.
 - (d) Distinguish between characteristic and universal gas constant.
 - (e) Define Helmholtz and Gibb's function. 4×5

Section-B

- 2. (a) Define reversible process.
 - (b) The turbine operating on a steady flow of N₂ is to produce 0.81 kJ/s of power by expanding N₂ from 301 kPa, 351 K (inlet specific volume of 0.35)

http://www.haryanapapers.com

24046–P-4 O-9 (14)

[P.T.O.

5

m³/kg), to 121 kPa. For preliminary design, the inlet velocity is assumed to be 30 m/s, the exit velocity is assumed to be 50m/s, and expansion will be considered by the relation PV^{1,4} = constant. Determine flow rate.

- 3. (a) What is quasi-static process? Illustrate with suitable examples. How you will execute a quasi-static process from an initial pressure P_{in} to the final pressure P_{out} on a P-V diagram.
 5
 - (b) A rigid tank have volume of 0.45 m³ and initially contained saturated vapour at 350 kN/m². The valve is then opened and steam from the line at 1.4 MPa, 300°C flows into the tank until the pressure is 1.4 MPa. Calculate the mass of steam that flows into the tank.

Section-C

- 4. (a) Discuss the limitations of 1st law of thermodynamics.
 - (b) An insulated rigid tank contains 0.9 kg of air at 151 kN/m² and 294K. A paddle wheel inside the tank is rotated by external source until the temperature in the tank rises to 328K, if the surrounding air is at T₀=293K, determine maximum possible work.

- 5. (a) Describe combined separating and throttling calorimeter.
 - (b) Steam enters in a turbine steadily at 3 MPa and 450°C at a rate of 8 kg/s and exists at 0.2 MPa and 150°C. The steam is losing heat to the surrounding air at 100 kPa and 25°C at a rate of 300 kW. Determine (a) the actual power output, (b) the maximum possible power output, (c) the second law efficiency, (d) the exergy destroyed.

15

Section-D

- **6.** (a) Define the triple and critical point of pure substance.
 - (b) Wet steam from a steam header (1.51MPa) is throttled to 110 kPa before it is charged to a throttling calorimeter. After throttling, the steam temperature rises to 1250°C. Determine the quality of the steam in the steam header. Determine maximum moisture load that can be determined by this set-up which requires at least 4°C of superheat for an accurate measurement. 15
- 7. (a) What is the expected temperature and pressure range when ideal gas equation agrees?

(b) A volumetric analysis of gas mixture yields the following results:

$$CO_2 = 12\%$$
, $O_2 = 4\%$, $N_2 = 82\%$, $CO = 2\%$.

Determine the characteristic gas constant. Write the expression for entropy change due to mixing of these gas components.

15

Section-E

- 8. (a) What do you understand by Joule Thomson Coefficient? Discuss.
 - (b) Using Clapeyron equation, estimate value of enthalpy of vaporization of R-134a at 20.5°C. Take $v_{fg} = 0.03515 \text{ m}^3/\text{kg}$ at 20.5°C. P_{sat} at 24.5°C and 16.5°C are 646.25 kPa and 504.6 kPa. 15
- 9. (a) Discuss the Stirling and Ericsson cycle with practical applications.
 - (b) Prove the relation

$$c_p - c_v = -T \left(\frac{\partial V}{\partial T} \right)_p^2 \left(\frac{\partial P}{\partial V} \right)_T$$
 12