M.Tech 1st Semester (ECE) CBCS Scheme Examination, December-2017

INFORMATION & COMMUNICATION THEORY

Paper-MTECE 21C3

Time allowed: 3 hours]

[Maximum marks: 100

Note: Attempt any five questions in total. All questions carry equal marks.

- 1. (a) How entropy is calculated? Explain various properties of entropy.
 - (b) A channel is described by the following channel matrix:

$$[P(Y/X-)] = \begin{array}{ccc} 0.5 & 0.5 & 0 \\ 0 & 0 & 1 \end{array}$$

- (i) Draw the channel diagram.
- (ii) Find the channel capacity
- 2. (a) Explain the measurement of mutual information and also derive the expression for channel capacity.
 - (b) A discrete source emits one of the eight symbols once every millisecond with probabilities 1/8, 2/8, 3/8, 3/8, 5/8, 6/8, 7/8 and 7/8 respectively. Determine the source entropy and information rate.

22662-P-3-Q-8(17)

[P.T.O.

22662

- 3. (a) Examine source encoding in detail along with the basic properties of codes. 10
 - (b) Apply the Shannon-Fano encoding procedure to the following DMS X: 10

[X] = [x_1 , x_2 , x_3 , x_4 , x_5 , x_6 , x_7] [P] = [1/3, 1/6, 1/5, 1/12, 1/12, 1/12, 1/12]

- 4. (a) What is the purpose of the Hamming code? How can we use the Hamming code to correct a burst error?
 - (b) Find checksum for the following bit sequence.

 Assume a 16 bit sequence size: 10
 - (i) 1001001110010011
 - (ii) 1001100001001101
- 5. (a) Draw the encoder circuit for an (n,k) linear systematic block code.
 - (b) For the (7,4) linear block code, consider r = 1011010 be the received vector at the receiver.
 Calculate the syndrome and then determine the error vector r.
- 6. (a) Explain Burst error correcting block codes with suitable diagram.

(b) For the (6,3) block code with generator matrix:

Find the corresponding code words for all possible data words.

- 7. Explain encoding and decoding procedure of BCH codes. How syndrome computation can be utilized for the BCH codes? Explain with suitable example. 20
- 8. Write short notes on: $10 \times 2 = 20$
 - (a) Performance of convolutional codes.
 - (b) Error probability Upper and Lower bounds.