M.Tech. 2nd Semester (ECE) Examination, May–2017 ELECTRONICS SYSTEM DESIGN Paper–MEEC–502

[Maximum marks : 100 Time allowed: 3 hours] Note: Attempt any five questions. 10 Design a full subtractor using NOR gates. 1. Using theorems minimize the following 10 expression $F = \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD + \overline{A}BCD + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D$ Implement the following function with a multiplier 2. with B, C and D are to be select lines: $F(A, B, C, D) = \sum (0, 1, 3, 4, 8, 9, 15)$ 10 Discuss XOR and AND-OR-Invert gates in detail. 10 3. Draw the circuit diagram of R-S type flip-flop. Design a JK flip flop using R-S flip flop. 10 What are basic clocking aspects with flip-flops? (b) What is clock skew? Describe why clock skew 10 create data transmission problems. Discuss the design steps for next decoders. 10 4.

	(b)	Explain briefly the MDS diagram construction		
	(0)	concepts with flow diagram.	10	
5 . 6.	(a)	Differentiate between ROM, PLA and PAL.	10	
	(b)	Explain the various design steps of asynchro	nous	
		machine.	10	
6.	(a)	Explain the concept of system controllers. Also		
		discuss the controller design phase and system		
		documention.	10	
	(b)	Design and implement 2 bit comparator.	10	
7.	(a)	Explain MEV approaches to asynchronous de	esign.	
			10	
	(b)	What are essential hazards? How these hazards		
	(-)	affect the operation of machines?	10	
8.	Write short notes on (any two): 20			
	(a)	Excitation map		
	(b)	Cycle and Races		
	(c)	MSI Decoders.		