Roll No.

21183

B. Sc. (Pass Course) 2nd Semester Examination - May, 2019

MATHEMATICS (VECTOR CALCULUS)

Paper: 12BSM123

Time: Three hours |

/ Maximum Marks: 40

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting question from each Section. Section - V is compulsory.

SECTION - I

1. (a) To show that:

 $3\frac{1}{2}$

https://www.haryanapapers.com

https://www.haryanapapers.com

$$\overrightarrow{a}$$
'. $(\overrightarrow{b'} \times \overrightarrow{c'}) = \frac{1}{\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})}$

P. T. O.

21183

- (b) If \vec{f} is a differentiable vector function of scalar and $(\overline{f}) = f$ variable then prove $\frac{d}{dt} \left(\overrightarrow{f}^2 \right) = 2 f \frac{df}{dt}$ and $\overrightarrow{f} \cdot \frac{d\overrightarrow{f}}{dt} = f \frac{df}{dt}$.
- 2. (a) If \vec{r} is a vector of a scalar t and $|\vec{r}| = r$ and \vec{a} is constant vector then differentiate w. r. t. t $3\frac{1}{2}$
 - (b) Find the unit tangent vector to the curve $\vec{r} = a(t-\sin t)\hat{i} + a(1-\cos t)\hat{j}$ at any point t. $3\frac{1}{2}$

SECTION - II

- 3. (a) Show that $\nabla f(r) \times \vec{r} = 0$ where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} \cdot 3\frac{1}{2}$
 - (b) If \overline{f} is vector point function and ϕ is scalar function point having continuous second partial derivative order then prove $\nabla \times (\phi \overrightarrow{f}) = (\nabla \phi) \times \overrightarrow{f} + \phi (\nabla \times \overrightarrow{f})$. $3\frac{1}{2}$
- 4. (a) Prove that curve $\left(\frac{\vec{a} \times \vec{r}}{r^3}\right) = -\frac{\vec{a}}{r^3} + \frac{3\vec{r}}{r^5} \left(\vec{a} \cdot \vec{r}\right)$

Where \vec{a} is constant vector.

3 1/2

https://www.haryanapapers.com

(2)

https://www.haryanapapers.com

https://www.haryanapapers.com

SECTION - III

- 5. (a) If u, v, w are orthogonal curvilinear co-ord then $\frac{\partial \vec{r}}{\partial u}$, $\frac{\partial \vec{r}}{\partial v}$, $\frac{\partial \vec{r}}{\partial w}$ and ∇u , ∇v , ∇w reciprocal system of vectors.
 - (b) To show that $\nabla \cdot \vec{f} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u} \left(h_2 h_3 \right) + \frac{\partial}{\partial v} \left(h_3 h_1 f_2 \right) + \frac{\partial}{\partial w} \left(h_1 h_2 f_3 \right) \right]$ where $\vec{f} = f_1 \hat{e}_1 + f_3 \hat{e}_3$.
- **6.** (a) If (r, θ, ϕ) are spherical Co-ordinates show $\nabla \phi = \nabla \times (r \csc \theta \Delta \theta)$.
 - (b) Express the velocity and acceleration of a point in spherical co-ordinates.

SECTION - IV

- 7. (a) Find the circulation of \vec{f} around the curwhere $\vec{f} = y\hat{i} + z\hat{j} + x\hat{k}$ and C is the $x^2 + y^2 = 1, z = 0$.
 - (3)

https://www.haryanapapers.com

- (b) Calculate $\int_{C} [(x^2 + y^2)\hat{i} + (x^2 y^2)\hat{j}] d\vec{r}$. where
 - C is the curve $y^2 = x$ joining (0,0) to (1,1). $3\frac{1}{2}$
- **l**_i (a) State and prove Green's theorem. $3\frac{1}{2}$
 - (b) Verify Stoke's theorem for the function $\vec{f} = x^2 \hat{i} + xy\hat{j}$ integrated around the square in the plane z = 0 whose sides are along the lines x = 0, x = a, y = 0, y = a.

SECTION - V

(n) Define divergence of a vector function. 2

https://www.haryanapapers.com

- (b) Define Laplacian operator. 2
- (a) Show that div. (curl \vec{f}) = 0
- (d) State Stokes theorem. 2
- (a) If $\vec{r} = \sin t \ \hat{i} + \cos t \ \hat{j} + t\hat{k} \ \text{find} \ \left| \frac{d\vec{r}}{dt} \right|$.
 - Prove that div. $\vec{r} = 3$ where $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$.

(4) https://www.haryanapapers.com