B. Tech. 3rd Semester AEIE F-Scheme Examination,

December-2014

NETWORK THEORY

Paper-EE-203-F

Time allowed: 3 hours] [Maximum marks: 100

Note: Attempt five questions in total selecting one questions from each section. Question No. 1 is compulsory.

- 1. (i) Define signal? Draw the waveform of F(t) = [u(t) u(t-1)]
 - (ii) Explain the condition of Hurwitz.
 - (iii) What are the properties of RC driving point immittance?
 - (iv) Derive the expression for synthesis of Y_{21} and Z_{21} with 1 ohm termination. 20

Section-A

2. (a) In series RLC ckt. Having data is R = 1/16 ohm, L = i/16 H, C = 4F determine V (0+) dV (0+)/dtand $d^2V (0+)/\text{dt}^2$ (14)

- (b) Derive the expression for transient response in AC for RL series. (6)
- 3. (a) Explain the concept of complex frequency. (10)
 - (b) Explain the initial value theorem. (10)

Section-B

- 4. (a) The two port network A and B are connected in parallel if the input voltage is 2V and current is 2A, 3A gets the output as 10V, 5A, 1A, calculate the parameter. (10)
 - (b) Find the Y-parameter of the ckt. Given below.

5. (a) Apply Norton's theorem using Laplace transform for the ckt. Given below across a and b. (10)

(b) Explain the parallel-series connection of two port network. (10)

Section-C

6. (a) Check wether the given function are p.r.f or not $f(1) = (s^3 + 5s^2 + 9s + 3) / (s^3 + 4s^2 + 7s + 9)$

(8)

(b) Check wether the given polynomial are Hurwitz or not.

$$P(s) = s^4 + s^3 + 2s^2 + 3s + 2$$

$$z(s) = \frac{(s^2 + 4s + 1)}{4s^2 + 5s + 1}$$
 (12)

- 7. Realize
 - (i) Cauer II

(ii) Foster – II
$$(20)$$

Section-D

8. Draw the oriented graph of the network as shown in figure. Determine the fundamental loop cutset matrix.

9. Synthesise the Z_{21} and Y_{21} as shown in the polynomial given below:

$$Z'_{21} = \frac{1}{s^4 + 3s^3 + 2s^2 + 6s + 5}$$

$$Y_{21}' = \frac{1}{s^3 + 3s^2 + 2s + 6}$$