B. Tech. 4th Semester (AEIE) F. Scheme Examination, May-2014

ELECTROMAGNETIC THEORY

		Paper-EE-208-F		
Time	all	owed: 3 hours] [Maximu	[Maximum marks: 100	
Note		Question number 1 is compulsory, a question from each of the four questions carry equal marks.	-	
1.	(a)	State coulomb's law and write the expression.	mathematical	
	(b)	Define electric potential and difference.	nd potential	
	(c)	What is Lorentz law of force?	3	
	(d)	What do you mean by displace density?	ement current 4	
	(e)	State lenz's law.	- 3	
	(f)	What is skin depth?	3	
		Section-A		
2.	(a)	State and explain Stoke's theorem.	10	
	(b)	Prove that the cylindrical coordinate orthogonal.	nate system is 10	
3.	(a)	What is the physical significane of o	divergence and	
		curl of a vector?	5	

24144_P-3-0-9-(14)

10

	(-) 24 I	44		
(b)	Derive the Laplaces's equation. Discuss the use			
	of Laplaces's equation in rectangular, cylind	rical		
	and spherical coordinates.	15		
	Section-B			
(a)	State Gauss's theorem and explain why it is called			
	divergence theorem?	10		
(b)	What is the method of images? Explain its us	se by		
	taking a specific example.	10		
(a)	Derive the boundary conditions for electric field			
	at the interface between two dielectrics?	10		
(b)	State and derive the equation of continuity.	10		
	Section-C			
(a)	State Ampere's law and briefly discuss	its		
	applications.	10		
(b)	Write short note on magnetic vector potentia	1.10		
(a)	Briefly explain:			
	(i) Magnetic dipole			
	(ii) Energy in magnetic field	10		
(b)	Drive magnetic boundary conditions at magn	etic		

5.

6.

7.

surfaces.

Section-D

- 8. (a) State and derive Maxwell's equation in defferential and integral form.
 - (b) What is Poynting vector? Give its physical interpretation.
- 9. (a) What is a plane wave? Derive the expression for velocity of the plane wave within a good conductor.
 - (b) Derive the transmission and reflection coefficient for the electromagnetic waves. Discuss the above for an open loop and a short circuited line. 10