PART - C

- **6.** Explain the procedure of designing Sarda type fall. 20
- 7. How would you proceed to determine the seepage line through a homogenous earthern dam with a horizontal drainage.

PART - D

- 8. Explain the design procedure for the standard stilling basin type I.
- 9. (a) Explain the method of fixation of waterway of drain in an aqueduct.
 - (b) What is spillway? Why are they provided? Explain any one type of spillway with neat sketch.

Roll No.

24514

B. Tech. 7th Semester (Civil Engg.) Examination – December, 2016

IRRIGATION ENGG. - II

Paper: CE-407-F

Time: Three Hours] [Maximum Marks : 100 Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all. Question No. 1 is compulsory. Attempt one question from each of the four Parts. All questions carry equal marks.

- **1.** Answer the following questions briefly: $2 \times 10 = 20$
 - (a) What is purpose of storage weir?
 - (b) What do you understand by launching apron?
 - (c) What precautions do you take against scour in well design.
 - (d) List various methods of flood routing.
 - (e) Mention features of design of syphon aqueduct.

- What is the length of crest in Sarda type fall.
- (g) What is the criteria for design of d/s wings in Sarda type fall?
- (h) Explain the qualities of a good siphon.
- Draw a neat sketch of Ogee spillway.
- What is difference between weir & barrage.

PART - A

- 2. (a) A stream has a width of 30 m, depth of 3 m & a mean velocity of 1.25 m/sec. Find the height of weir to be built on the stream floor to raise the water level by 1 m. Assume value of discharge coefficient as 0.95.
 - (b) Following particulars were recorded from a barrage: 10
 - maximum reservoir level = 212 m
 - (ii) Pond Level = 211 m
 - (iii) d/s HFL in river = 210 m
 - (iv) maximum design flood discharge = $3500 \text{ m}^3/\text{s}$
 - (v) crest level of barrage = 207 m
 - (vi) crest level of head regulator = 208 m

(2)

- (vii) River bed level = 205 m
- (viii)coefficient of discharge = 2.1 m^{1/2}/sec for barrage
- (ix) coefficient of discharge = $1.5 \text{ m}^{1/2}/\text{sec}$ for head regulator

- (x) design discharge of main = $500 \text{ m}^3/\text{sec}$ canal Determine the number of gates required for the barrage & the head regulator of each gate has 10 m clear span, Neglect:
- end contraction due to piers and abutments,
- (ii) velocity of approach.
- 3. Sketch a suitable cross-section of a guide banks as used in river training works. Explain the process of launching aprons in such works. 20

PART - B

- 4. Describe step by step procedure that you will adopt for flood routing computations required for reservoirs under 'trial and error method'. 20
- **5.** Design following components of syphon aqueduct :
 - (a) drainage water way, (b) canal water way, (c) levels at different sections, (d) contraction & expansion transition for the following data:
 - Discharge of canal = 25 cumecs
 - (ii) Bed width of canal = 20 m
 - (iii) Depth of water level of canal = 1.5 m
 - (iv) Bed level of canal = 160.00 m
 - (v) High flood discharge of drainage = 400 cumecs

(3)

- (vi) HFL of drainage = $160.50 \, \text{m}$
- (vii) BL of drainage = 158.00 m
- (viii)General Ground Level = 160.00 m