Roll No.

24226

B. Tech. 5th Semester (Electrical Engg.) I

Examination – December, 2013

ELECTRONIC MEASUREMENT & INSTRUMENTATION

'F' Scheme

Paper: EE-339-F

Time	: Three	hours]	 [Maximum	Marks	: 100

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complain in this regard, will be entertained after examination.

Note: Attempt one question from each Section and Question No. 1 is compulsory.

- (a) What do you mean by vertical sensitivity and vertical deflection factor.
 - (b) Describe various types of errors in measuring instruments.
 - (c) How wein bridge is used for frequency measurement?
 - (d) Compare digital and Analog transducer 4
 - (e) Explain the function of calibration and zeroing network in signal conditioning system 4

SECTION - A

2.	(i)	Describe the following for CRO circuit 10)
	t A	(a) Blanking circuit.	
		(b) Z-axis modulation	
		(c) Astigmation control	
4.	•.	(d) Time base generator	•
	(ii)	The X-deflecting Plates in a CRT ax 15mm long	3
		and 6mm apart. The centre of the plates is 20 cm	1
		from the screen. The accelerating voltage is	S
*	2	2500V. Determine deflection sensitivity and	ŀ
		deflection factor of CRT.)
3.	(i)	Explain the working of function generator in	1
4.	. **	detail using blocks, relations and wave forms. 10)
•,	(ii)	What are heterodyne wave analyzers? Explain	1
		the theory of RF heterodyne wave analyzer for 0	ا إحدا
		20 MHz RF range?))
		SECTION - B	

How the digital frequency meter works? Explain.

all the constituent stages and inter connecting

schematic diagram of this instrument.

(ii)	Determine the % age error in Q measurement					
: :	introduced by 0.02Ω insertion resistance. The					
	resonating capacitor is 135 PF and oscillator					
	frequency at resonance is 3 MHz. The resistance of					
	coil is 10Ω .					

5. (i) What is an Universal Counter? How it can be used to measure frequency and Period of a signal.

10

(ii) Explain Power measurement method in detail. 10

SECTION - C

- 6. (i) Explain construction and working of nixie tube.Discuss it advantages also.
 - (ii) Describe the Dynamic scattering Process of LCD.Discuss its advantages and disadvantages.10
- 7. (i) What is an RVDT? How does it differ from an LVDT? Explain how it can be used for measurement of angular displacement.10
 - (ii) A strain guage with a guage factor of 4 has a resistance of 500Ω. It is to be used in a test in which the strain to be measured may be as low as 5×10⁻⁴. What will be the change in guage resistance.

SECTION - D

- 8. (i) Explain Data acquisition and conversion system with the help of block diagram.
 - (ii) Explain carrier type AC signal conditioning system.

 $10 \times 2 = 20$

-
 - (i) Signal conditioning system
 - (ii) Discharge devices.

9. Explain in detail: