Roll No.

67013

M.C.A. Ist Sem. w.e.f. Dec. 2011 (Old)

Examination – December, 2012

(For Re-appear Candidates)

DIGITAL DESIGN

Paper: MCA-103

Time: Three hours]

[Maximum Marks: 80

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complain in this regard, will be entertained after examination.

Note: Attempt five questions in all by selecting at least one question from each Unit. All questions carry equal marks.

UNIT - I

- **1.** (a) What is Booth's coding? Perform $(-12)_{10} \times (-8)_{10}$ using this method.
 - (b) What are Error-Detecting and Error-Correcting Codes? Illustrate the significance of each. 5
 - (c) What is BCD arithmetic? Perform the following BCD operations: 6
 - (i) $(5678)_{10} + (5432)_{10}$
 - (ii) $(9876)_{10} (6789)_{10}$

- **2.** (a) Why is 2's complement preferred in binary arithmetic? Also perform the following operations using 2's complement arithmetic: 6
 - (i) $(45)_{10} + (66)_{10}$
 - (ii) $(43)_{10} (96)_{10}$
 - (b) What are Gray codes? Where are these useful? Illustrate.
 - (c) Perform the operation: $(1001 \times 1101)_2 + (B1.A)_{10} (31.5)_8 + (35.5)_{10}$ and tind out the result in an Octal Number System.

UNIT - II

(a) What is K-map? Using K-map, obtain the minimal expression in SOP and POS of the following expression:

$$F = \sum_{m} (0, 2, 4, 6, 7, 8, 10, 12, 13, 15)$$

Implement the same in using universal gate.

- (b) What do you mean by the following terms: 6
 - (i) Noise Margin
 - (ii) Propagation delay
 - (iii) Fan-in and Fan-out

Illustrate their relevance.

(c) What are Universal Gates? How Universal gates are realized into basic gates? Illustrate. 3

- (a) What is a Logic family ? What criteria make one logic family to differ from another? Differentiate between TTL and CMOS Logic families.
 - (c) What do you mean by Canonical SOP and POS?
 Obtain canonical SOP and POS of the following function: http://www.HaryanaPapers.com
 F (X, Y, Z) = X + Y. Z'
 - (c) What is De Morgan's Theorem? How is it useful? Illustrate its use with suitable examples. 3

UNIT - III

- 5. (a) What is combinational circuit? Design a combinational circuit that receives 2 input binary number and produces its square at the output.
 - (b) What is Master-Slave flip-flop? Discuss its working and show how the race around condition is eliminated in this flip- flop. 7
 - (c) What is programmable logic array (PLA)'? Where and how are these useful? Illustrate.
- 6. (a) What is the purpose served by ROM in a computer? Draw the block diagram of a 32 X 8 ROM with an Enable input. How many address lines and output lines are needed? Also show the external connections of two such ROMs in order to produce 64 X 8 ROM.
 - (b) How would you convert decimal digits represented by a 7-bit ASCII into a 4-bit BCD?

- (c) Differentiate between the following:
 - (i) Decoder and Encoder
 - (ii) Level-triggered and edge-triggered flipflops 2

2

UNIT - IV

- 7. (a) What is dynamic RAM? How is it different from Static RAM? Under what circumstances each of these preferred and why? Explain.
 5
 - (b) What is a counter? Show that N-bit counter connected to N × 2^N decoder is equivalent to a ring counter with 2^N flip-flop. Illustrate it with N=2.
 - (c) What is a BCD Counter? How will you design it? Illustrate.
 5
- **8.** (a) What is Multiplexer (MUX)? How will you design a 64 x 1 MUX using 8 X 1 MUX? Illustrate. 5
 - (b) What are the general characteristics of a good shift registers? Design a 3-bit shift register and outline the procedure for serial to parallel conversion and vice-versa.
 - (c) What is a meant by IC RAM? Provide the logic diagram of such a IC memory cell. How is it possible to construct and address a 1 KB memory using 128X 8 bit RAM chips? Explain.

- (c) Differentiate between the following:
 - (i) Decoder and Encoder

2

(ii) Level-triggered and edge-triggered flipflops 2

UNIT - IV

- 7. (a) What is dynamic RAM? How is it different from Static RAM? Under what circumstances each of these preferred and why? Explain.
 5
 - (b) What is a counter? Show that N-bit counter connected to $N \times 2^N$ decoder is equivalent to a ring counter with 2^N flip-flop. Illustrate it with N=2.
 - (c) What is a BCD Counter? How will you design it? Illustrate.
- **8.** (a) What is Multiplexer (MUX)? How will you design a 64 x 1 MUX using 8 X 1 MUX? Illustrate. 5
 - (b) What are the general characteristics of a good shift registers? Design a 3-bit shift register and outline the procedure for serial to parallel conversion and vice-versa.
 - (c) What is a meant by IC RAM? Provide the logic diagram of such a IC memory cell. How is it possible to construct and address a 1 KB memory using 128X 8 bit RAM chips? Explain.