- **8.** (a) Define Deterministic Finite Automata (DFA) and construct a DFA that accepts the language of all strings of 0's and 1's which contains 000 as substring.
 - (b) Describe Moore machine with the help of example.

Roll No.

67011

MCA 1st Semester (with old notes) Examination – December, 2016 MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Paper: MCA-101

Time: Three Hours]

[Maximum Marks: 80

Before answering the question, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

UNIT - I

- 1. (a) Show that the relation R defined by $R = \{(a, b) : a b \text{ is divisible by 3; a, b } \in Z \}$ is an equivalence relation.
 - (b) Prove that the function $f: R \to R$ defined as f(x) = 2x 3 is invertible. Also find its inverse.

(4)

- **2.** (a) Discuss the commutative and associative properties of the binary operation '*' on R defined by a * b = a + b + ab for all $a, b \in R$.
 - (b) Define a group and show that the set {1, 2, 3, 4, 5} is not a group with respect to addition modulo 6.

UNIT - II

3. (a) Consider the following statements:

p: He is coward; q: He is lazy; r: He is rich

Write the following compound statements in the symbolic form

- (i) He is coward or lazy but not rich
- (ii) He is neither coward nor lazy
- (b) Using truth table prove that $p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$.
- (c) Write the contrapositive and inverse of the following statement:

If today is Easter, Then tomorrow is Monday

- (d) Prove that the implication $(p \land q) \land \sim (p \lor q)$ is a fallacy.
- **4.** (a) Determine the validity of the following argument using deductive method :

If I study, then I will pass the examination. If I go to picnic, then I will study. But I failed examination. Therefore, I went to picnic.

(b) Using principle of mathematical induction prove that

1 + 3 + 5 + $(2n - 1) = n^2$ for all values of $n \in \mathbb{N}$.

UNIT - III

- **5.** (a) Consider the poset A = ({ 1, 2, 3, 4, 6, 9, 12, 18, 36}, /). Draw the Hasse diagram and find the greatest lower bound and least upper bound of the sets {6, 18} and {4, 6, 9}.
 - (b) Consider a set $D = \{1, 3, 5, 15\}$. Prove that partially order set D under the relation 'divides' is a lattice. Also draw its Hasse diagram.
- **6.** (a) What do you mean by distributive lattice? Consider a poset L = (1, 2, 3, 5, 30) under the relation 'divides'. Show that $(L, ^{\wedge}, v)$ is a distributive lattice.
 - (b) Describe Boolean algebra. What are its applications?

UNIT - IV

- **7.** (a) Define the terms Alphabet, Kleene Closure of an Alphabet, Language and Kleene Closure of a Language with the help of example.
 - (b) Describe the set represented by regular expressions:
 - (i) $ab (bc)^* (ii) (0+1)^*11$