M.Tech 1st Semester Cyber Forensics and Information Security Examination,

December-2017

MATHEMATICAL FOUNDATIONS OF INFORMATION SECURITY

Paper-MTCF-101

Time allowed: 3 hours]

[Maximum marks: 100

Note: Attempt five questions in total, selecting one question from each section & Question No. 1 which is compulsory. All questions carry equal marks.

1. Write a note on following:

 $5 \times 4 = 20$

- (a) Applications of factoring
- (b) Primality Test
- (c) Enciphering Matrices
- (d) Elgamal Encryption.

Section-A

- State and prove Fermat's Little theorem. Also list the Applications of Chinese Remainder Theorem.
- 3. Write a note on Euler's phi function. Also define Jacobi Symbol. Also find square root of a = 186 modulo p=401.

23541-P-2-Q-9(17)

[P.T.O.

Section-B

4.	Explain DES Algorithm in detail by using sui diagram and examples. Also explain double DES Triple DES.	•
5.	Write a note on following:	20
	(a) Permutation cipher	
	(b) Hill cipher	
	Section-C	
6.	Explain RSA public-key Encryption Algorithm.	Also
	describe and explain key generation Algorithm wi	th the
	help of suitable example.	20
7.	What do you mean by Knapsack problem? Expl	ain in.
	detail any one method to solve knapsack problem	. 20
	Section-D	
8.	Describe and explain Pollard's 'Rho method' in det	ail by
	taking suitable example.	20
9.	Write a note on following:	20
. *	(a) Continued fraction method	
•	(b) Factor base Algorithm	
	•	

23541